Bayesian filtering for quantum-enhanced atomic sensors

Janek Kołodyński

ICFO - The Institute of Photonic Sciences, Barcelona, Spain

Antonio Acin – Quantum Information Theory Maciek Lewenstein – Quantum Optics Theory

Bayesian filtering for quantum-enhanced atomic sensors

Morgan Mitchell – Quantum Information Theory with Cold Atoms and Non-classical Light

PHYSICAL REVIEW LETTERS 120, 040503 (2018)

Signal Tracking Beyond the Time Resolution of an Atomic Sensor by Kalman Filtering

Ricardo Jiménez-Martínez,^{1,*} Jan Kołodyński,¹ Charikleia Troullinou,¹ Vito Giovanni Lucivero,¹ Jia Kong,¹ and Morgan W. Mitchell^{1,2}

https://arxiv.org/abs/1707.08131

Atomic ensembles as sensors

Key: phenomenon of optical pumping

OPTICAL PUMPING OF AN ATOMIC GROUND STATE

FIG. 1. A simple optical pumping experiment. Atoms are polarized by the scattering of circularly polarized resonant light. Either the transmitted light at A or the fluorescently scattered light at B can be used to monitor the atomic polarization.

REVIEWS OF MODERN PHYSICS

VOLUME 44, NUMBER 2

Optical Pumping^{*}

WILLIAM HAPPER

Columbia Radiation Laboratory, Department of Physics, Columbia University, New York, New York 10027

 $\hat{\mathbf{j}} = \hat{\mathbf{I}} + \hat{\mathbf{S}}$

single-atom spin (nuclear+electronic parts):

collective atomic-ensemble spin:

[Happer, Jau, Walker "Optically Pumped Atoms" (Wiley 2009)]

Atomic ensembles as sensors

Key: phenomenon of optical pumping

OPTICAL PUMPING OF AN ATOMIC GROUND STATE

TABLE I PROPERTIES OF SEVERAL TYPES OF ATOMIC SENSORS

Sensor type		$T_2[\mathbf{s}]$	$\delta \varphi$ [rad] @ T_2	H _{int}	$\omega_0/2\pi$	Stability or Sensitivity @ 1s
Ion optical clock		1	~1	$\alpha q_{_{e}}q_{_{e}}$	10^{15} Hz	10-15
Fountain atomic clock		1	10-4	$etaec{\mu}_n\cdotec{\mu}_e$	$10^{10}\mathrm{Hz}$	10^{-14}
Beam atomic clock		0.01	10-3	$eta ec{\mu}_n \cdot ec{\mu}_e$	10^{10} Hz	10 ⁻¹²
Vapor cell magnetometer		0.01	10-4	$\vec{\mu} \cdot \vec{B}$	10 ¹⁰ Hz/T	10 ⁻¹³ T
Vapor cell NMR gyroscope		100	10-8	$\vec{L} \cdot \vec{\Omega}$	7×10 ⁻⁷ Hz/(°/h)	10 ⁻³ °/h
Laser cooled atom interferometer accel.		1	0.1	ħkTa	10^7Hz/g	10 ⁻⁸ g
Atomic electric field sensor		10-7	~0.1	$\vec{d} \cdot \vec{E}$	10 ⁸ Hz/(V/cm)	$\sim 10 \ \mu V/cm$

single-atom spin (nuclear+electronic parts):

collective atomic-ensemble spin:

 $\hat{\mathbf{J}} = \sum_n \hat{\mathbf{j}}^{(n)}$

Conditional squeezing by QND (Faraday) measurements

[Deutsch I. and Jessen P., *Optics Communications* 283 (2010) 681–694] [Hammerer et al, "Quantum interface between light and atomic ensembles" RMP 82 (2010)]

Conditional squeezing by QND (Faraday) measurements ETTER

doi:10.1038/nature21434

Simultaneous tracking of spin angle and amplitude beyond classical limits

Giorgio Colangelo¹, Ferran Martin Ciurana¹, Lorena C. Bianchet¹, Robert J. Sewell¹ & Morgan W. Mitchell^{1,2}

"evading" Heisenberg uncertainty relation:

$$\delta F_y \delta F_z \geq \frac{1}{2} \left| \left\langle [F_y, F_z] \right\rangle \right| = \frac{1}{2} \left| \left\langle F_x \right\rangle \right.$$

It is a *continuous measurement*, but can we use quantum continuous (stochastic) measurement formalism?

(with back-action!)

Continuous conditional spin-squeezing

VOLUME 91, NUMBER 25

PHYSICAL REVIEW LETTERS

week ending 19 DECEMBER 2003

Quantum Kalman Filtering and the Heisenberg Limit in Atomic Magnetometry

JM Geremia,^{*} John K. Stockton, Andrew C. Doherty, and Hideo Mabuchi Norman Bridge Laboratory of Physics, California Institute of Technology, Pasadena, California, 91125, USA (Received 27 June 2003; published 19 December 2003)

Quantum continuous measurement framework (with homodyne detection):

Measurement dynamics:

$$y(t)dt = 2\eta \sqrt{M} \langle \hat{J}_{z}(t) \rangle_{c} dt + \sqrt{\eta} dW(t),$$

Ensemble dynamics:

$$d\hat{\rho}_{c}(t) = -i\gamma B[\hat{J}_{y}, \hat{\rho}_{c}]dt + M\mathcal{D}[\hat{J}_{z}]\hat{\rho}_{c}dt + \sqrt{M\eta}\mathcal{H}[\hat{J}_{z}]\hat{\rho}_{c}dW(t),$$

BUT SUCH A MODEL IS NOT ACCURATE ENOUGH !!

Current best descriptions of atomic-ensemble dynamics (e.g., SERF magnetometers) rely on single-atom models:

$$\rho = \frac{1}{N} \sum_{n} \rho^{(n)} \quad \Longrightarrow \quad \frac{d\rho}{dt} = a_{hf} \frac{[\mathbf{I} \cdot \mathbf{S}, \rho]}{i\hbar} + \mu_B g_S \frac{[\mathbf{B} \cdot \mathbf{S}, \rho]}{i\hbar} + \frac{\varphi(1 + 4\langle \mathbf{S} \rangle \cdot \mathbf{S}) - \rho}{T_{SE}} + \frac{\varphi - \rho}{T_{SD}} + R[\varphi(1 + 2\mathbf{s} \cdot \mathbf{S}) - \rho] + D\nabla^2 \rho.$$

[Appelt et al, PRA 58(2), 1412 (1998); F. Grossetete, J. Phys. (Paris) 25, 383 (1964); 29, 456 (1968)]

What to do then?... Go step by step!

STEP 1 [the experiment presented today...]

- Describe the **atomic spin-noise** phenomenologically (via *noise spectroscopy*) in a <u>stochastic</u> manner.
- Work in the regime in which "back-action" can be avoided, so that photon shot-noise is also <u>stochastic</u> and <u>independent</u> from the atomic noise.
- Sense <u>stochastic</u> **input signals** (*waveform estimation*) that you "know" and have control off—can then verify explicitly the performance of the sensor.
- Design the sensing task so that **state and measurement dynamics** are <u>linear-Gaussian</u> (LG), so that the **optimal (real-time) estimator** of the input signal can be explicitly constructed:

Kalman Filter – optimal estimator for Gaussian stochastic dynamics

Optimal estimation scheme minimises the (time-) average Mean Squared Error :

$$MSE(t) := Tr\{\boldsymbol{\Sigma}_t\} = E\left[(\mathbf{x}_t - \tilde{\mathbf{x}}_t)^T (\mathbf{x}_t - \tilde{\mathbf{x}}_t)\right] = E\left[|\mathbf{x}_t - \tilde{\mathbf{x}}_t|^2\right]$$

(error) covariance matrix: $\mathbf{\Sigma}_t := \mathrm{E} [(\mathbf{x}_t - \tilde{\mathbf{x}}_t)(\mathbf{x}_t - \tilde{\mathbf{x}}_t)^T]$

Kalman Filter – optimal estimator for Gaussian stochastic dynamics

Optimal estimator minimising (av.) MSE: mea

mean of the posterior distribution

$$\tilde{\mathbf{x}}_{t+\delta t} = \int_{t}^{t+\delta t} D\mathbf{x} \, \mathbf{x}_{t+\delta t} \, p(\mathbf{x}_{t+\delta t} | \{\mathbf{z}_{\tau}\}_{\tau < t})$$

Special case of linear Gaussian state and observation dynamics:

$$d\mathbf{x}_t = \mathbf{F}_t \mathbf{x}_t dt + \mathbf{G}_t d\mathbf{w}_t \qquad d\mathbf{z}_t = \mathbf{H}_t \mathbf{x}_t dt + d\mathbf{v}_t, \qquad \text{(Ito calculus)}$$

Wiener (white-noise) terms: $\mathrm{E}\left[\mathrm{d}\mathbf{w}_t\mathrm{d}\mathbf{w}_s^T\right] = \mathbf{Q}_t\,\delta(t-s)\,\mathrm{d}t \qquad \mathrm{E}\left[\mathrm{d}\mathbf{v}_t\mathrm{d}\mathbf{v}_s^T\right] = \mathbf{R}_t\,\delta(t-s)\,\mathrm{d}t$

But, all the parameters are a priori known !! (we are fighting "only" fluctuations)

"waveform estimation" (in contrast to "tracking")

Kalman Filter – optimal estimator for Gaussian stochastic dynamics

Linear Gaussian (LG) state and observation dynamics:

 $d\mathbf{x}_{t} = \mathbf{F}_{t}\mathbf{x}_{t}dt + \mathbf{G}_{t}d\mathbf{w}_{t} \qquad \qquad \mathbf{E}\left[d\mathbf{w}_{t}d\mathbf{w}_{s}^{T}\right] = \mathbf{Q}_{t}\,\delta(t-s)\,dt \\ d\mathbf{z}_{t} = \mathbf{H}_{t}\mathbf{x}_{t}dt + d\mathbf{v}_{t}, \qquad \qquad \mathbf{E}\left[d\mathbf{v}_{t}d\mathbf{v}_{s}^{T}\right] = \mathbf{R}_{t}\,\delta(t-s)\,dt$

Optimal estimator is provided by the solution to the Kalman-Bucy equation and... :

 $\frac{\mathrm{d}\tilde{\mathbf{x}}_t}{\mathrm{d}t} = \mathbf{F}_t \tilde{\mathbf{x}}_t + \mathbf{K}_t \left(\mathbf{z}_t - \mathbf{H}_t \tilde{\mathbf{x}}_t \right)$ Kalman gain: $\mathbf{K}_t := \mathbf{\Sigma}_t \mathbf{H}_t^T \mathbf{R}_t^{-1}$

...variance equation for the (error) covariance matrix:

$$\frac{\mathrm{d}\boldsymbol{\Sigma}_t}{\mathrm{d}t} = \mathbf{F}_t \boldsymbol{\Sigma}_t + \boldsymbol{\Sigma}_t \mathbf{F}_t^T + \mathbf{G}_t \mathbf{Q}_t \mathbf{G}_t^T - \boldsymbol{\Sigma}_t \mathbf{H}_t^T \mathbf{R}_t^{-1} \mathbf{H}_t \boldsymbol{\Sigma}_t$$

Important facts:

- *Kalman(-Bucy) Filter* (**KF**) is fast and causal no need for *memory* of observations, $\{z_{\tau}\}_{\tau < t}$, just the *last* one! The coviariance matrices, Σ_t , can be precomputed!
- The KF provides the error for free, if the LG model assumed is correct...
- ..., however, the stabilisation of the filter (convergence to the *steady-state solution*) serves as a verification tool.

Rudolf E. Kalman "The father of control theory"

[arXiv:1707.08131]

[R. E. Kalman and R. S. Bucy, J. Basic Eng. 83, 95 (1961).]

Performance of our atomic sensor (SPOILER)

Atomic sensor: Monitoring spin precession using optical Faraday rotation

Experimental setup:

rubidium vapour cell

- ✓ Cell with Rb vapour and 100 Torr of N_2 buffer gas
- ✓ Cell is heated to reach densities: 10¹² 10¹³ atoms/cm³

Experimental setup:

- ✓ Cell with Rb vapour and 100 Torr of N_2 buffer gas
- ✓ Cell is heated to reach densities: 10¹² 10¹³ atoms/cm³
- ✓ Placed inside 1 layer of mu-metal shielding
- \checkmark 3-axis DC-Fields & gradient coils in the beam propagation direction

Noise spectroscopy of the sensor

Power noise spectrum of Rb in natural abundance

Fit spectrum to model:

$$S_{zz}(\omega) = S_{ph} + \frac{S_{at}}{(1/T_2)^2 + (\omega - \omega_0)^2}$$

[V. G. Lucivero et al. Phys. Rev. A, 95, 041803 (2017)]

Power spectral density

Spin dynamics (Ornstein-Uhlenbeck process)

$$dJ_y(t) = \left(\omega_L J_z(t) - \underbrace{T_2}_{T_2} J_y(t)\right) dt + \underbrace{dW_y(t)}_{T_2} dJ_z(t) = -\left(\omega_L J_y(t) - \underbrace{T_2}_{T_2} J_z(t)\right) dt + \underbrace{dW_z(t)}_{T_2} dt$$

Spin measurement (via Faraday rotation)

$$I(t)dt = g_{\rm D} J_z(t)dt + dW_{\rm D}(t)$$

Our atomic sensor – a two-stage sensor

Waveform estimation - the waveform is encoded in the guadratures of the pump light

ignal (pump) – an O-U process (that we know and control!):

$$dq(t) = -\kappa q(t)dt + dW_q(t),$$

$$dp(t) = -\kappa p(t)dt + dW_p(t),$$

$$\mathcal{E}_{\mathrm{P}}(t) = [\cos(\omega_{\mathrm{P}}t), \sin(\omega_{\mathrm{P}}t)] \cdot \mathbf{q}_t$$

Atoms – O-U process from noise spectroscopy *plus* the pump term:

$$dJ_y(t) = \left(\omega_L J_z(t) - \frac{1}{T_2} J_y(t)\right) dt + dW_y(t) \quad \mathbf{j}_t = [J_y(t), J_z(t)]^T$$
$$dJ_z(t) = -\left(\omega_L J_y(t) - \frac{1}{T_2} J_z(t)\right) dt + dW_z(t) + \mathcal{E}_P(t) dt$$

Measurement (probe) – Faraday rotation with shot noise:

$$\begin{split} I(t_k) &= g_{\rm D} J_z(t_k) + \xi_{\rm D}(t_k) \quad \xi_{\rm D}(t_k) \equiv \frac{1}{\Delta} \int_{t_k - \Delta}^{t_k} \mathrm{d} w_{\rm sn}(t') \\ \text{(finite sampling period)} \end{split}$$

Linear Gaussian state and observation dynamics:

 $d\mathbf{x}_t = \mathbf{F}_t \mathbf{x}_t dt + d\mathbf{w}_t \quad \text{state:} \quad \mathbf{x}_t = \mathbf{j}_t \oplus \mathbf{q}_t \quad \text{state noise:} \quad d\mathbf{w}_t = d\mathbf{w}_t^{(J)} \oplus d\mathbf{w}_t^{(q)}$ $\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$ observation: $\mathbf{z}_k \equiv z_k = I(t_k)$ observation noise: $\mathbf{v}_k \equiv v_k = \xi_D(t_k)$

Subtlety: we need to use Hybrid (Continuous-Discrete) Kalman Filter...

Ċ

Validation of the Linear Gaussian model and the Kalman Filter performance

Validation of the Linear Gaussian model and the Kalman Filter performance

Observation (blue) estimation error, waveform (red) estimation error Kalman-filter construction provides also precision on estimates! (black lines)

Verification: We focus on pump quadratures (not atoms) because we have access to true values!

Tracking partially unknown signals with the atomic sensor and using the Kalman Filter

We track unknown triangular waveforms and employ (2nd order) kinematic model

Approximate unknown dynamics by assuming that **acceleration** is constant on average but fluctuates.

$$\mathbf{q}_{t} = \begin{pmatrix} \mathbf{x}_{t} \\ \dot{\mathbf{x}}_{t} \\ \ddot{\mathbf{x}}_{t} \end{pmatrix} \qquad \mathrm{d}\mathbf{q}_{t} = \begin{pmatrix} \mathrm{d}\mathbf{x}_{t} \\ \mathrm{d}\dot{\mathbf{x}}_{t} \\ \mathrm{d}\ddot{\mathbf{x}}_{t} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{q}_{t} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \mathrm{d}\mathbf{w}_{t}$$
(enlarge the state space)

Tracking triangular waveforms – naive KF (green) and 2nd order kinematic model KF (red):

 \mathbf{x}_t

Model	Bias^2	Var	MSE
$\{\tilde{q}_k\}_{(\mathrm{WP})}$	3.36×10^{-5}	3.0×10^{-6}	3.66×10^{-5}
$\{\tilde{q}_k\}_{(\mathrm{PM})}$	1.02×10^{-5}	7.6×10^{-6}	1.78×10^{-5}

By enlarging the state space we increase noise (Var) in the estimate, but significantly decrease the Bias (*drag*) and, hence the MSE!

Thank You!

J. Kolodynski

C. Trollinou

A. Dimic