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Atomic ensembles as sensors

[Happer, Jau, Walker “Optically Pumped Atoms” (Wiley 2009)]

Key: phenomenon of optical pumping

single-atom spin (nuclear+electronic parts):

collective atomic-ensemble spin:



Atomic ensembles as sensors

[Kitching et al, “Atomic Sensors – A Review” (IEEE Sensors 2011)]

Key: phenomenon of optical pumping

single-atom spin (nuclear+electronic parts):

collective atomic-ensemble spin:

magnetic
field



Conditional squeezing by QND 
(Faraday) measurements

[Hammerer et al, “Quantum interface between light and atomic ensembles” RMP 82 (2010)]
[Deutsch I.  and Jessen P., Optics Communications 283 (2010) 681–694]

Polarisation of the probe light rotated by a Faraday angle:

(single-shot) 
conditional squeezed (in J

z
) state 

after the QND measurement

(“weak” QND measurement, off/on-resonance)



Conditional squeezing by QND 
(Faraday) measurements

“evading” Heisenberg uncertainty 
relation:

It is a continuous measurement, but 
can we use quantum continuous 

(stochastic) measurement formalism?
(with back-action!)



Continuous conditional spin-squeezing

Quantum continuous measurement 
framework (with homodyne detection):

Ensemble dynamics:

Measurement dynamics:

BUT SUCH A MODEL IS NOT 
ACCURATE ENOUGH !!

Current best descriptions of atomic-ensemble dynamics (e.g., SERF magnetometers) rely on single-atom models:

[Appelt et al, PRA 58(2), 1412 (1998); F. Grossetete, J. Phys. (Paris) 25, 383 (1964); 29, 456 (1968)]



What to do then?... Go step by step!

STEP 1 [the experiment presented today...]

● Describe the atomic spin-noise phenomenologically (via noise 
spectroscopy) in a stochastic manner.

● Work in the regime in which “back-action” can be avoided, so that photon 
shot-noise is also stochastic and independent from the atomic noise.

● Sense stochastic input signals (waveform estimation) that you “know” and 
have control off—can then verify explicitly the performance of the sensor.

● Design the sensing task so that state and measurement dynamics are 
linear-Gaussian (LG), so that the optimal (real-time) estimator of the 
input signal can be explicitly constructed:

Kalman Filter



[arXiv:1707.08131]

Kalman Filter – optimal estimator for 
Gaussian stochastic dynamics

Finger actual position: Sensor output: Finger estimated position:

Model – how the 
sensor works.

Estimation scheme, 
potentially with memory:

 

Particular 
characteristics of 

dynamics

Optimal estimation scheme minimises the (time-) average Mean Squared Error :

state observation estimator

(error) covariance matrix:
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Kalman Filter – optimal estimator for 
Gaussian stochastic dynamics

model estimationdynamics

Optimal estimator minimising (av.) MSE:

state observation estimatorstate

mean of the posterior distribution

Special case of linear Gaussian state and observation dynamics:

Wiener (white-noise) terms:

(Ito calculus)

But, all the parameters are a priori known !! “waveform estimation” (in contrast to “tracking”) 
(we are fighting “only” fluctuations)
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Kalman Filter – optimal estimator for 
Gaussian stochastic dynamics

[R. E. Kalman and R. S. Bucy, J. Basic Eng. 83, 95 (1961).]

Linear Gaussian (LG) state and observation dynamics:

Rudolf E. Kalman
“The father of 

control theory”

Optimal estimator is provided by the solution to the Kalman-Bucy equation and… :

Kalman gain:

...variance equation for the (error) covariance matrix:

Important facts:

● Kalman(-Bucy) Filter (KF) is fast and causal – no need for memory of observations, 
            , just the last one! The coviariance matrices,     , can be precomputed!

● The KF provides the error for free, if the LG model assumed is correct…
● …, however, the stabilisation of the filter (convergence to the steady-state solution) 

serves as a verification tool.
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Performance of our atomic sensor 
(SPOILER)

- KF-based waveform estimate
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Atomic sensor: 
Monitoring spin precession using optical Faraday rotation

off-resonance
(probe) light 

birefringence

Polarimeter

-
-HWP

PBS

[arXiv:1707.08131]

strong magnetic field 

phase shift

(far-detuned light)

NO MEASUREMENT 
BACK-ACTION!



 Cell with Rb vapour and 100 Torr of N2 buffer gas

 Cell is heated to reach densities: 1012 – 1013 atoms/cm3

rubidium vapour cell

Experimental setup:

[arXiv:1707.08131]



 Cell with Rb vapour and 100 Torr of N2 buffer gas

 Cell is heated to reach densities: 1012 – 1013 atoms/cm3

 Placed inside 1 layer of mu-metal shielding

 3-axis DC-Fields & gradient coils in the beam propagation direction

[arXiv:1707.08131]

Experimental setup:



Power noise spectrum of Rb in natural abundance

Rb85

Rb87
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Fit spectrum to model:

Noise spectroscopy of the sensor

[V. G. Lucivero et al. Phys. Rev. A, 95, 041803 (2017)]



Photon shot noise Spin noise

Spin relaxation

Spin dynamics (Ornstein-Uhlenbeck process)

Spin measurement (via Faraday rotation)

Power spectral density

[arXiv:1707.08131]



Our atomic sensor – a two-stage sensor

Signal (pump) – an O-U process (that we know and control!):

Atoms – O-U process from noise spectroscopy plus the pump term:

Measurement (probe) – Faraday rotation with shot noise:

Waveform estimation – the waveform is encoded in the quadratures of the pump light

Linear Gaussian state and observation dynamics:

(finite sampling period)

state: state noise:

observation: observation noise:

Subtlety: we need to use Hybrid (Continuous-Discrete) Kalman Filter...
[arXiv:1707.08131]



Validation of the Linear Gaussian model 
and the Kalman Filter performance

[arXiv:1707.08131]



Validation of the Linear Gaussian model 
and the Kalman Filter performance

[arXiv:1707.08131]

 True (blue) observation/waveform, estimates (red) of observation/waveform

  Observation (blue) estimation error, waveform (red) estimation error
Kalman-filter construction provides also precision on estimates! (black lines) 

Verification: We focus on pump quadratures (not atoms) 
because we have access to true values!



Tracking partially unknown signals with the 
atomic sensor and using the Kalman Filter

We track unknown triangular waveforms and employ (2nd order) kinematic model

Approximate unknown dynamics by assuming that acceleration is constant on average but fluctuates.

(enlarge the state space)

Tracking triangular waveforms – naive KF (green) and 2nd order kinematic model KF (red):

By enlarging the state space we increase 
noise (Var) in the estimate, but significantly 

decrease the Bias (drag) and, hence the MSE!



Thank You!

V.G. Lucivero

J. Zielinska

M. W. Mitchell

F.A. Beduini

Jia Kong

R. Jimenez

J. Kolodynski C. Trollinou A. Dimic
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